15 research outputs found

    Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    Get PDF
    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute.This work was supported by a NSFGRFP grant (DGE-1042796) (RJF) and a Cambridge International Scholarship (RJF). The modelling work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council. HC would like to thank the UK Medical Research Council (Grant number U105960399) for their support.This is the final version of the article. It first appeared from Royal Society Publishing via http://dx.doi.org/10.1098/rsif.2015.019

    Elucidating the Sectioning Fragmentation Mechanism in Silica-Supported Olefin Polymerization Catalysts with Laboratory-Based X-Ray and Electron Microscopy

    Get PDF
    Strict morphological control over growing polymer particles is an indispensable requirement in many catalytic olefin polymerization processes. In catalysts with mechanically stronger supports, e. g., polymerization-grade silicas, the emergence of extensive cracks via the sectioning fragmentation mechanism requires severe stress build-up in the polymerizing catalyst particle. Here, we report on three factors that influence the degree of sectioning in silica-supported olefin polymerization catalysts. Laboratory-based X-ray nano-computed tomography (nanoCT) and focused ion beam-scanning electron microscopy (FIB-SEM) were employed to study catalyst particle morphology and crack propagation in two showcase catalyst systems, i.e., a zirconocene-based catalyst (i.e., Zr/MAO/SiO2, with Zr=2,2’-biphenylene-bis-2-indenyl zirconium dichloride and MAO=methylaluminoxane) and a Ziegler-Natta catalyst (i.e., TiCl4/MgCl2/SiO2), during slurry-phase ethylene polymerization. The absence of extensive macropores in some of the catalysts’ larger constituent silica granulates, a sufficient accessibility of the catalyst particle interior at reaction onset, and a high initial polymerization rate were found to favor the occurrence of the sectioning pathway at different length scales. While sectioning is beneficial for reducing diffusion limitations, its appearance in mechanically stronger catalyst supports can indicate a suboptimal support structure or unfavourable reaction conditions

    Data from: Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    No full text
    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute

    XRD raw data

    No full text
    XRD 2theta (degrees) vs. arbitrary intensity data for the ZnSiHA samples that were mixture of HA+aTCP (Table 1), and higher resolution scans of phase pure HA and substituted HA that were used in Rietveld refinement of the lattice parameters

    FTIR raw data

    No full text
    Raw data from FTIR scans (wavenumber cm^-1 vs arbitrary intensity) of ZnSiHA

    XRF raw data

    No full text
    XRF report from AMG Superalloys Ltd. of elemental oxide weight percentages. Oxides tested for included CaO, ZnO, SiO2, P2O5, Na2O, MgO, Al2O3, K2O, TiO2, Mn3O4, V2O5, Cr2O3, Fe2O3, BaO, ZrO2 and SrO

    Modelling files

    No full text
    Cif files and CASTEP files for ZnSiHA with Zn at an interstitial position and on a Ca site, and ZnHA with Zn at an interstitial position
    corecore